1. T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, “Fundamentals of inorganic solid-state electrolytes for batteries.”
Nat. Mater..
18(12): 1278–1291 (2019).
2. F. Wu, J. Maier, Y. Yu, “Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.”
Chem. Soc. Rev..
49(5): 1569(2020).
3. Y. Shen, Y. Zhang, S. Han, J. Wang, Z. Peng, L. Chen, “Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes.”
Joule.
2(9): 1674–1689 (2018).
4. J. Lau, R.H. Deblock, D.M. Butts, D.S. Ashby, C.S. Choi, B.S. Dunn, “Sulfide Solid Electrolytes for Lithium Battery Applications.”
Adv. Energy Mater..
8(27): 1800933(2018).
5. M. Li, C. Wang, Z. Chen, K. Xu, J. Lu, “New Concepts in Electrolytes.”
Chem. Rev..
120(14): 6783–6819 (2020).
6. F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, “Review on solid electrolytes for all-solid-state lithium-ion batteries.”
J. Power Sources.
389, 198–213 (2018).
7. Y.-K. Sun, “Promising All-Solid-State Batteries for Future Electric Vehicles.”
ACS Energy Lett..
5(10): 3221–3223 (2020).
8. C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, “Recent advances in all-solid-state rechargeable lithium batteries.”
Nano Energy.
33, 363–386 (2017).
9. C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li, X. Sun, “All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design.”
Energy Environ. Sci..
14(5): 2577–2619 (2021).
10. Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, “Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries.”
Adv. Mater..
30(17): e1705702(2018).
11. Y. Chen, K.H. Wen, T.H. Chen, X.J. Zhang, M. Armand, S.M. Chen, “Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces.”
Energy Storage Mater..
31, 401–433 (2020).
12. H. Huo, Y. Chen, R. Li, N. Zhao, J. Luo, J.G. Pereira da Silva, R. Mücke, P. Kaghazchi, X. Guo, X. Sun, “Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries.”
Energy Environ. Sci..
13(1): 127–134 (2020).
13. A. Manthiram, X. Yu, S. Wang, “Lithium battery chemistries enabled by solid-state electrolytes.”
Nat. Rev. Mater..
2, 16103(2017).
14. D. Bresser, K. Hosoi, D. Howell, H. Li, H. Zeisel, K. Amine, S. Passerini, “Perspectives of automotive battery R&D in China, Germany, Japan, and the USA.”
J. Power Sources.
382, 176–178 (2018).
15. A.M. Nolan, Y. Zhu, X. He, Q. Bai, Y. Mo, “Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries.”
Joule.
2(10): 2016–2046 (2018).
16. Y. Nikodimos, M.-C. Tsai, L.H. Abrha, H.H. Weldeyohannis, S.-F. Chiu, H.K. Bezabh, K.N. Shitaw, F.W. Fenta, S.-H. Wu, W.-N. Su, “Al– Sc dual-doped LiGe2(PO4)3 – a NASICON-type solid electrolyte with improved ionic conductivity.”
J. Mater. Chem. A.
8(22): 11302–11313 (2020).
17. W. Xiao, J. Wang, L. Fan, J. Zhang, X. Li, “Recent advances in Li1+x Al x Ti2−x(PO4)3 solid-state electrolyte for safe lithium batteries.” Energy Storage Mater.. 19, 379–400 (2019).
18. A.J. Samson, K. Hofstetter, S. Bag, V. Thangadurai, “A bird's-eye view of Li-stuffed garnet-type Li7 La3 Zr2 O12 ceramic electrolytes for advanced all-solid-state Li batteries.”
Energy Environ. Sci..
12(10): 2957–2975 (2019).
19. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, “High-power all-solid-state batteries using sulfide superionic conductors.”
Nat. Energy.
1(4): 16030(2016).
20. Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, “Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries.”
Adv. Mater..
31(44): e1901131(2019).
21. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, “A lithium superionic conductor.”
Nat. Mater..
10(9): 682–686 (2011).
22. L.O. Val⊘en, J.N. Reimers, “Transport properties of LiPF6-based Li-ion battery electrolytes.”
J. Electrochem. Soc..
152(5): A882(2005).
23. Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara, G. Ceder, “Understanding interface stability in solid-state batteries.”
Nat. Rev. Mater..
5, 105–126 (2020).
24. P.-J. Lian, B.-S. Zhao, L.-Q. Zhang, N. Xu, M.-T. Wu, X.-P. Gao, “Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries.”
J. Mater. Chem. A.
7(36): 20540–20557 (2019).
25. W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, “Interface Stability in Solid-State Batteries.”
Chem. Mater..
28(1): 266–273 (2015).
26. B. Wu, S. Wang, W.J. Evans Iv, D.Z. Deng, J. Yang, J. Xiao, “Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems.”
J. Mater. Chem. A.
4(40): 15266–15280 (2016).
27. T.K. Schwietert, V.A. Arszelewska, C. Wang, C. Yu, A. Vasileiadis, N.J.J. de Klerk, J. Hageman, T. Hupfer, I. Kerkamm, Y. Xu, E. van der Maas, E.M. Kelder, S. Ganapathy, M. Wagemaker, “Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes.”
Nat. Mater..
19(4): 428–435 (2020).
28. S.A. Pervez, M.A. Cambaz, V. Thangadurai, M. Fichtner, “Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook.”
ACS Appl. Mater. Interfaces.
11(25): 22029–22050 (2019).
29. S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, “Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries.”
Chem.
5(4): 753–785 (2019).
30. J. Ma, Y. Li, N.S. Grundish, J.B. Goodenough, Y. Chen, L. Guo, Z. Peng, X. Qi, F. Yang, L. Qie, C.-A. Wang, B. Huang, Z. Huang, L. Chen, D. Su, G. Wang, X. Peng, Z. Chen, J. Yang, S. He, X. Zhang, H. Yu, C. Fu, M. Jiang, W. Deng, C.-F. Sun, Q. Pan, Y. Tang, X. Li, X. Ji, F. Wan, Z. Niu, F. Lian, C. Wang, G.G. Wallace, M. Fan, Q. Meng, S. Xin, Y.-G. Guo, L.-J. Wan, “The 2021 battery technology roadmap.”
J. Phys. D Appl. Phys..
54(18): (2021).
31. A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, “Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes.”
Chem. Rev..
120(14): 6878–6933 (2020).
32. Y. Zhu, X. He, Y. Mo, “Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations.”
ACS Appl Mater Interfaces.
7(42): 23685–93 (2015).
33. J. Haruyama, K. Sodeyama, L. Han, K. Takada, Y. Tateyama, “Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery.”
Chem. Mater..
26(14): 4248–4255 (2014).
34. L. Wang, R. Xie, B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun, C. Xu, S. Dong, T.S. Chan, J. Luo, G. Cui, L. Chen, “In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries.”
Nat. Commun..
11(1): 5889(2020).
35. S.P. Culver, R. Koerver, W.G. Zeier, J. Janek, “On the Functionality of Coatings for Cathode Active Materials in Thiophosphate‐Based All‐Solid‐State Batteries.”
Adv. Energy Mater..
9(24): (2019).
36. Y. Xiao, L.J. Miara, Y. Wang, G. Ceder, “Computational Screening of Cathode Coatings for Solid-State Batteries.”
Joule.
3(5): 1252–1275 (2019).
37. X. Li, L. Jin, D. Song, H. Zhang, X. Shi, Z. Wang, L. Zhang, L. Zhu, “LiNbO3-coated LiNi0.8 Co0.1 Mn0.1 O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery.” J. Energy Chem.. 40, 39–45 (2020).
38. Y.Q. Zhang, Y. Tian, Y. Xiao, L.J. Miara, Y. Aihara, T. Tsujimura, T. Shi, M.C. Scott, G. Ceder, “Direct Visualization of the Interfacial Degradation of Cathode Coatings in Solid State Batteries: A Combined Experimental and Computational Study.”
Adv. Energy Mater..
10(27): 1903778(2020).
39. C. Wang, X. Li, Y. Zhao, M.N. Banis, J. Liang, X. Li, Y. Sun, K.R. Adair, Q. Sun, Y. Liu, F. Zhao, S. Deng, X. Lin, R. Li, Y. Hu, T.K. Sham, H. Huang, L. Zhang, R. Yang, S. Lu, X. Sun, “Manipulating Interfacial Nanostructure to Achieve High‐Performance All‐ Solid‐State Lithium‐Ion Batteries.”
Small Methods.
3(10): 1900261(2019).
40. X. Li, Z. Ren, M. Norouzi Banis, S. Deng, Y. Zhao, Q. Sun, C. Wang, X. Yang, W. Li, J. Liang, X. Li, Y. Sun, K. Adair, R. Li, Y. Hu, T.-K. Sham, H. Huang, L. Zhang, S. Lu, J. Luo, X. Sun, “Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries.”
ACS Energy Lett..
4(10): 2480–2488 (2019).
41. G. Lu, X. Li, Z. Wang, D. Song, H. Zhang, C. Li, L. Zhang, L. Zhu, “Enhanced electrochemical performances of LiCoO2 cathode for all-solid-state lithium batteries by regulating crystallinity and composition of coating layer.”
J. Power Sources.
468, (2020).
42. X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, K.R. Adair, X. Sun, “Air-stable Li3 InCl6 electrolyte with high voltage compatibility for all-solid-state batteries.”
Energy Environ. Sci..
12(9): 2665–2671 (2019).
43. T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, “Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries.”
Adv. Mater..
30(44): e1803075(2018).
44. S. Wang, Q. Bai, A.M. Nolan, Y. Liu, S. Gong, Q. Sun, Y. Mo, “Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability.”
Angew. Chem. Int. Ed..
58(24): 8039–8043 (2019).
45. C. Yu, Y. Li, K.R. Adair, W. Li, K. Goubitz, Y. Zhao, M.J. Willans, M.A. Thijs, C. Wang, F. Zhao, Q. Sun, S. Deng, J. Liang, X. Li, R. Li, T.-K. Sham, H. Huang, S. Lu, S. Zhao, L. Zhang, L. van Eijck, Y. Huang, X. Sun, “Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries.”
Nano Energy.
77, (2020).
46. L.M. Riegger, R. Schlem, J. Sann, W.G. Zeier, J. Janek, “Lithium‐Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid‐State Batteries.”
Angew. Chem. Int. Ed..
133(12): 6792–6797 (2021).
47. A. Sakuda, A. Hayashi, M. Tatsumisago, “Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery.”
Sci. Rep..
3(1): 2261(2013).
48. K.H. Park, Q. Bai, D.H. Kim, D.Y. Oh, Y. Zhu, Y. Mo, Y.S. Jung, “Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries.”
Adv. Energy Mater..
8(18): 1800035(2018).
49. J. Xu, L. Liu, N. Yao, F. Wu, H. Li, L. Chen, “Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries.”
Mater. Today Nano.
8, (2019).
50. D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam, H.A. Lee, S.M. Lee, Y.S. Jung, “Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries.”
Nano Lett..
17(5): 3013–3020 (2017).
51. A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc, A. Matsuda, N. Machida, A. Hayashi, M. Tatsumisago, “Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery.”
Nat. Rev. Chem..
3(3): 189–198 (2019).
52. C. Park, S. Lee, K. Kim, M. Kim, S. Choi, D. Shin, “Electrochemical Properties of Composite Cathode Using Bimodal Sized Electrolyte for All-Solid-State Batteries.”
J. Electrochem. Soc..
166(3): A5318–A5322 (2019).
53. F. Strauss, T. Bartsch, L. de Biasi, A.Y. Kim, J. Janek, P. Hartmann, T. Brezesinski, “Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries.”
ACS Energy Lett..
3(4): 992–996 (2018).
54. A. Sakuda, T. Takeuchi, H. Kobayashi, “Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3 Co1/3 Mn1/3 O2 and Li2 S-P2 S5 solid electrolytes.” Solid State Ion.. 285, 112–117 (2016).
55. W. Zhang, D.A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schroder, R. Koerver, T. Leichtweiss, P. Hartmann, W.G. Zeier, J. Janek, “Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries.”
ACS Appl. Mater. Interfaces.
9(21): 17835–17845 (2017).
56. T. Shi, Q. Tu, Y. Tian, Y. Xiao, L.J. Miara, O. Kononova, G. Ceder, “High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization.”
Adv. Energy Mater..
10(1): 1902881(2020).
57. L. Froboese, J.F.v.d. Sichel, T. Loellhoeffel, L. Helmers, A. Kwade, “Effect of Microstructure on the Ionic Conductivity of an All Solid-State Battery Electrode.”
J. Electrochem. Soc..
166(2): A318–A328 (2019).
58. S. Yamakawa, S. Ohta, T. Kobayashi, “Effect of positive electrode microstructure in all-solid-state lithium-ion battery on high-rate discharge capability.”
Solid State Ion..
344, 115079(2020).
59. S.H. Jung, U.H. Kim, J.H. Kim, S. Jun, C.S. Yoon, Y.S. Jung, Y.K. Sun, “Ni‐Rich Layered Cathode Materials with Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries.”
Adv. Energy Mater..
10(6): (2019).
60. Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, B. Wu, J. Hu, C. Wang, J.-G. Zhang, “Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode.”
Science.
370(6522): 1313–1317 (2020).
61. X. Liu, J. Shi, B. Zheng, Z. Chen, Y. Su, M. Zhang, C. Xie, M. Su, Y. Yang, “Constructing a High-Energy and Durable Single-Crystal NCM811 Cathode for All-Solid-State Batteries by a Surface Engineering Strategy.”
ACS Appl. Mater. Interfaces.
13(35): 41669–41679 (2021).
62. C. Wang, R. Yu, S. Hwang, J. Liang, X. Li, C. Zhao, Y. Sun, J. Wang, N. Holmes, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, D. Su, X. Sun, “Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries.”
Energy Stor. Mater..
30, 98–103 (2020).
63. X. Liu, B. Zheng, J. Zhao, W. Zhao, Z. Liang, Y. Su, C. Xie, K. Zhou, Y. Xiang, J. Zhu, H. Wang, G. Zhong, Z. Gong, J. Huang, Y. Yang, “Electrochemo‐ Mechanical Effects on Structural Integrity of Ni‐Rich Cathodes with Different Microstructures in All Solid‐ State Batteries.”
Adv. Energy Mater..
11(8): 2003583(2021).
64. Y. Han, S.H. Jung, H. Kwak, S. Jun, H.H. Kwak, J.H. Lee, S.T. Hong, Y.S. Jung, “Single‐ or Poly‐ Crystalline Ni‐Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for All‐Solid‐State Batteries?.”
Adv. Energy Mater..
11(21): 2100126(2021).
65. C. Heubner, S. Maletti, H. Auer, J. Hüttl, K. Voigt, O. Lohrberg, K. Nikolowski, M. Partsch, A. Michaelis, “From Lithium‐Metal toward Anode‐Free Solid‐State Batteries: Current Developments, Issues, and Challenges.”
Adv. Energy Mater..
31(51): 2106608(2021).
66. S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, “Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes.”
Solid State Ion..
318, 102–112 (2018).
67. A.L. Santhosha, L. Medenbach, J.R. Buchheim, P. Adelhelm, “The Indium−Lithium Electrode in Solid‐ State Lithium‐Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability.”
Batter. Supercaps.
2(6): 524–529 (2019).
68. M. Nagao, A. Hayashi, M. Tatsumisago, “Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2 S-P2 S5 Solid Electrolyte.”
Electrochemistry.
80(10): 734–736 (2012).
69. Y. Zhu, X. He, Y. Mo, “First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries.”
J. Mater. Chem. A.
4(9): 3253–3266 (2016).
70. F. Han, J. Yue, X. Zhu, C. Wang, “Suppressing Li Dendrite Formation in Li2 S‐P2 S5 Solid Electrolyte by LiI Incorporation.”
Adv. Energy Mater..
8(18): (2018).
71. Y. Tao, S. Chen, D. Liu, G. Peng, X. Yao, X. Xu, “Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells.”
J. Electrochem. Soc..
163(2): A96–A101 (2015).
72. Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen, “All-in-one improvement toward Li6 PS5 Br-Based solid electrolytes triggered by compositional tune.”
J. Power Sources.
410, 162–170 (2019).
73. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, “Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery.”
Sci. Adv..
4(12): eaau9245(2018).
74. J. Liang, X. Li, Y. Zhao, L.V. Goncharova, W. Li, K.R. Adair, M.N. Banis, Y. Hu, T.K. Sham, H. Huang, L. Zhang, S. Zhao, S. Lu, R. Li, X. Sun, “An Air‐ Stable and Dendrite‐Free Li Anode for Highly Stable All‐Solid‐State Sulfide‐Based Li Batteries.”
Adv. Energy Mater..
9(38): 1902125(2019).
75. A. Sharafi, E. Kazyak, A.L. Davis, S. Yu, T. Thompson, D.J. Siegel, N.P. Dasgupta, J. Sakamoto, “Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7 La3 Zr2 O12
.”
Chem. Mater..
29(18): 7961–7968 (2017).
76. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, “Toward garnet electrolyte– based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.”
Sci. Adv..
3(4): e1601659(2017).
77. D. Wang, C. Zhu, Y. Fu, X. Sun, Y. Yang, “Interfaces in Garnet‐Based All‐Solid‐State Lithium Batteries.”
Adv. Energy Mater..
10(39): 2001318(2020).
78. C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, “Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.”
Chem. Rev..
120(10): 4257–4300 (2020).
79. A. Paolella, W. Zhu, G.L. Xu, A. La Monaca, S. Savoie, G. Girard, A. Vijh, H. Demers, A. Perea, N. Delaporte, A. Guerfi, X. Liu, Y. Ren, C.J. Sun, J. Lu, K. Amine, K. Zaghib, “Understanding the Reactivity of a Thin Li1.5 Al0.5 Ge1.5(PO4)3 Solid‐State Electrolyte toward Metallic Lithium Anode.”
Adv. Energy Mater..
10(32): 2001497(2020).
80. Y. Liu, C. Li, B. Li, H. Song, Z. Cheng, M. Chen, P. He, H. Zhou, “Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries.”
Adv. Energy Mater..
8(16): 1702374(2018).