1. H. J. Lee, J. H. Lee, “Review of High Performance Aqueous Rechargeable Batteries Based on Layered Double Hydroxide.”
Ceramist.
24(1): 22–34 (2021).
2. J. Kim, J. Oh, Y. Kim Ju, Y.-G. Lee, M. Kim Kwang, “리튬이차전지용 고체 전해질의 최근 진전과 전망.” 전기화학회지. 22(3): 87–103 (2019).
3. K.-N. Jung, H.-S. Shin, M.-S. Park, J.-W. Lee, “Solid-State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry.”
ChemElectroChem.
6(15): 3842–3859 (2019).
4. L. Zhu, J. Li, Y. Jia, P. Zhu, M. Jing, S. Yao, X. Shen, S. Li, F. Tu, “Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte.”
Int. J. Energy Res..
44(13): 10168–10178 (2020).
5. S. Lee, “Spark Plasma Sintering Technique and Application for All-Solid-State Batteries.”
Ceramist.
22(2): 170–181 (2019).
6. W. Zhao, J. Yi, P. He, H. Zhou, “Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives.”
Electrochemical Energy Reviews.
2(4): 574–605 (2019).
7. H. Morimoto, H. Awano, J. Terashima, Y. Shindo, S. Nakanishi, N. Ito, K. Ishikawa, S.-I. Tobishima, “Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2–x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell.”
J. Power Sources.
240, 636–643 (2013).
8. D. Safanama, N. Sharma, R. P. Rao, H. E. A. Brand, S. Adams, “Structural evolution of NASICON-type Li1+xAlxGe2–x(PO4)3 using in situ synchrotron X-ray powder diffraction.”
J. Mater. Chem. A.
4(20): 7718–7726 (2016).
9. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, “Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects.”
Chem.
5(9): 2326–2352 (2019).
10. C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui, J. Li, S. Dong, X. Zhou, G. Cui, “Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery.”
Adv. Sci..
6(22): 1901036(2019).
11. C.-W. Yi 서순성, K. Kim, “리튬 이차전지용 고체전해질 개발 동향.” 전기화학회지. 15(1): 1–11 (2012).
12. Z. Xue, D. He, X. Xie, “Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.”
J. Mater. Chem. A.
3(38): 19218–19253 (2015).
13. A. Manuel Stephan, “Review on gel polymer electrolytes for lithium batteries.”
Eur. Polym. J..
42(1): 21–42 (2006).
14. I. Osada, H. de Vries, B. Scrosati, S. Passerini, “Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.”
Angew. Chem. Int. Ed..
55(2): 500–513 (2016).
15. B. De, A. Yadav, S. Khan, K. K. Kar, “A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.”
ACS Appl. Mater. Interfaces.
9(23): 19870–19880 (2017).
16. Z. Zhang, Y. Zhao, S. Chen, D. Xie, X. Yao, P. Cui, X. Xu, “An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life.”
J. Mater. Chem. A.
5(32): 16984–16993 (2017).
17. Y.-T. Chen, A. Jena, W. K. Pang, V. K. Peterson, H.-S. Sheu, H. Chang, R.-S. Liu, “Voltammetric Enhancement of Li-Ion Conduction in Al-Doped Li7–xLa3Zr2O12 Solid Electrolyte.”
J. Phys. Chem. C.
121(29): 15565–15573 (2017).
18. X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, Y. Shen, “Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes.”
J. Am. Chem. Soc..
139(39): 13779–13785 (2017).
19. H. Yang, J. Bright, B. Chen, P. Zheng, X. Gao, B. Liu, S. Kasani, X. Zhang, N. Wu, “Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries.”
J. Mater. Chem. A.
8(15): 7261–7272 (2020).
20. Y. Liang, Z. Lin, Y. Qiu, X. Zhang, “Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators.”
Electrochim. Acta.
56(18): 6474–6480 (2011).
21. D. Zhou, Y.-B. He, R. Liu, M. Liu, H. Du, B. Li, Q. Cai, Q.-H. Yang, F. Kang, “In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries.”
Adv. Energy Mater..
5(15): 1500353(2015).
22. T. Janaki Rami Reddy, V. B. S. Achari, A. K. Sharma, V. V. R. Narasimha Rao, “Preparation and electrical characterization of (PVC + KBrO3) polymer electrolytes for solid state battery applications.”
Ionics.
13(6): 435–439 (2007).
23. J. Bae, Y. Li, F. Zhao, X. Zhou, Y. Ding, G. Yu, “Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries.”
Energy Storage Mater..
15, 46–52 (2018).
24. S. A. Pervez, P. Ganjeh-Anzabi, U. Farooq, M. Trifkovic, E. P. L. Roberts, V. Thangadurai, “Fabrication of a Dendrite-Free all Solid-State Li Metal Battery via Polymer Composite/Garnet/Polymer Composite Layered Electrolyte.”
Adv. Mater. Interfaces.
6(11): 1900186(2019).
25. X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, K. Liu, Y. Xiang, Y. Cui, “Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.”
Nano Lett..
18(6): 3829–3838 (2018).
26. Z. Xu, T. Yang, X. Chu, H. Su, Z. Wang, N. Chen, B. Gu, H. Zhang, W. Deng, H. Zhang, W. Yang, “Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO2 Electrolytes for a High Rate Capability Li-Metal Battery.”
ACS Appl. Mater. Interfaces.
12(9): 10341–10349 (2020).
27. O. L. Kang, A. Ahmad, N. H. Hassan, U. A. Rana, “[MG49-LiClO4]:[TiO2-SiO2] Polymer Electrolytes: In Situ Preparation and Characterization.”
Int. J. Polym. Sci..
2016, 9838067(2016).
28. N. S. T. Do, D. M. Schaetzl, B. Dey, A. C. Seabaugh, S. K. Fullerton-Shirey, “Influence of Fe2O3 Nanofiller Shape on the Conductivity and Thermal Properties of Solid Polymer Electrolytes: Nanorods versus Nanospheres.”
J. Phys. Chem. C.
116(40): 21216–21223 (2012).
29. Y. Lin, X. Wang, J. Liu, J. D. Miller, “Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries.”
Nano Energy.
31, 478–485 (2017).
30. M. Yuan, J. Erdman, C. Tang, H. Ardebili, “High performance solid polymer electrolyte with graphene oxide nanosheets.”
RSC Adv..
4(103): 59637–59642 (2014).
31. Z. Yang, Z. Sun, C. Liu, Y. Li, G. Zhou, S. Zuo, J. Wang, W. Wu, “Lithiated nanosheets hybridized solid polymer electrolyte to construct Li+ conduction highways for advanced all-solid-state lithium battery.”
J. Power Sources.
484, 229287(2021).
32. Q. Han, S. Wang, Z. Jiang, X. Hu, H. Wang, “Composite Polymer Electrolyte Incorporating Metal–Organic Framework Nanosheets with Improved Electrochemical Stability for All-Solid-State Li Metal Batteries.”
ACS Appl. Mater. Interfaces.
12(18): 20514–20521 (2020).
33. G. Wang, P. He, L.-Z. Fan, “Asymmetric Polymer Electrolyte Constructed by Metal–Organic Framework for Solid-State, Dendrite-Free Lithium Metal Battery.”
Adv. Funct. Mater..
31(3): 2007198(2021).
34. Q. Pan, D. M. Smith, H. Qi, S. Wang, C. Y. Li, “Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries.”
Adv. Mater..
27(39): 5995–6001 (2015).
35. H. Park, E. G. Lee, D. Kim, Y. Kang, S. Choi, “Development of free-standing phosphate/polymer composite electrolyte films for room temperature operating Li+ rechargeable solid-state battery.”
Solid State Ion..
344, 115137(2020).
36. J. Zagórski, B. Silván, D. Saurel, F. Aguesse, A. Llordés, “Importance of Composite Electrolyte Processing to Improve the Kinetics and Energy Density of Li Metal Solid-State Batteries.”
ACS Appl. Energy Mater..
3(9): 8344–8355 (2020).
37. S. Chen, D. Xie, G. Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, X. Yao, “Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application.”
Energy Storage Mater..
14, 58–74 (2018).
38. C. Xu, B. Sun, T. Gustafsson, K. Edström, D. Brandell, M. Hahlin, “Interface layer formation in solid polymer electrolyte lithium batteries: An XPS study.”
J. Mater. Chem. A.
2(20): 7256–7264 (2014).
39. Y. Zhu, X. He, Y. Mo, “Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations.”
ACS Appl. Mater. Interfaces.
7(42): 23685–23693 (2015).
40. V. Thangadurai, S. Narayanan, D. Pinzaru, “Garnet-type solid-state fast Li ion conductors for Li batteries: critical review.”
Chem. Soc. Rev..
43(13): 4714–4727 (2014).
41. C. Monroe, J. Newman, “The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces.”
J. Electrochem. Soc..
152(2): A396(2005).
42. L. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Frömling, H. L. Thaman, S. Berendts, R. Uecker, W. C. Carter, Y.-M. Chiang, “Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes.”
Adv. Energy Mater..
7(20): 1701003(2017).
43. L. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, “Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes.”
ACS Appl. Mater. Interfaces.
7(3): 2073–2081 (2015).
44. S. Kalnaus, A. S. Sabau, W. E. Tenhaeff, N. J. Dudney, C. Daniel, “Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria.”
J. Power Sources.
201, 280–287 (2012).
45. L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J. B. Goodenough, “PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”.”
Nano Energy.
46, 176–184 (2018).
46. S.-S. Chi, Y. Liu, N. Zhao, X. Guo, C.-W. Nan, L.-Z. Fan, “Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries.”
Energy Storage Mater..
17, 309–316 (2019).
47. F. Chen, D. Yang, W. Zha, B. Zhu, Y. Zhang, J. Li, Y. Gu, Q. Shen, L. Zhang, D. R. Sadoway, “Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries.”
Electrochim. Acta.
258, 1106–1114 (2017).
48. C. Yan, P. Zhu, H. Jia, J. Zhu, R. K. Selvan, Y. Li, X. Dong, Z. Du, I. Angunawela, N. Wu, M. Dirican, X. Zhang, “High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries.”
Advanced Fiber Materials.
1(1): 46–60 (2019).
49. M. J. Palmer, S. Kalnaus, M. B. Dixit, A. S. Westover, K. B. Hatzell, N. J. Dudney, X. C. Chen, “A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte.”
Energy Storage Mater..
26, 242–249 (2020).
50. X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li, J. Borovilas, B. Xu, C. Shi, T. Jin, X. Liao, Y. Li, X. He, S. Du, Y. Fu, M. Dontigny, K. Zaghib, Y. Yang, “Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte.”
Nano Energy.
60, 205–212 (2019).
51. L. Zhu, P. Zhu, Q. Fang, M. Jing, X. Shen, L. Yang, “A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery.”
Electrochim. Acta.
292, 718–726 (2018).
52. L. Zhu, P. Zhu, S. Yao, X. Shen, F. Tu, “High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery.”
Int. J. Energy Res..
43(9): 4854–4866 (2019).
53. H. Al-Salih, A. Huang, C.-H. Yim, A. I. Freytag, G. R. Goward, E. Baranova, Y. Abu-Lebdeh, “A Polymer-Rich Quaternary Composite Solid Electrolyte for Lithium Batteries.”
J. Electrochem. Soc..
167(7): 070557(2020).
54. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, “A lithium superionic conductor.”
Nat. Mater..
10(9): 682–686 (2011).
55. Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. Xu, “A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries.”
J. Power Sources.
301, 47–53 (2016).
56. K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong, H. Zhang, S. Zhang, “A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries.”
Adv. Mater..
32(17): 2000399(2020).
57. Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, P. G. Bruce, “Ionic conductivity in crystalline polymer electrolytes.”
Nature.
412(6846): 520–523 (2001).
58. C. Zhang, S. Gamble, D. Ainsworth, A. M. Z. Slawin, Y. G. Andreev, P. G. Bruce, “Alkali metal crystalline polymer electrolytes.”
Nat. Mater..
8(7): 580–584 (2009).
59. H. T. T. Le, D. T. Ngo, R. S. Kalubarme, G. Cao, C.-N. Park, C.-J. Park, “Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum-Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries.”
ACS Appl. Mater. Interfaces.
8(32): 20710–20719 (2016).
60. T. Liu, Z. Chang, Y. Yin, K. Chen, Y. Zhang, X. Zhang, “The PVDF-HFP gel polymer electrolyte for Li-O2 battery.”
Solid State Ion..
318, 88–94 (2018).
61. S. M. Cho, J. Shim, S. H. Cho, J. Kim, B. D. Son, J.-C. Lee, W. Y. Yoon, “Quasi-Solid-State Rechargeable Li–O2 Batteries with High Safety and Long Cycle Life at Room Temperature.”
ACS Appl. Mater. Interfaces.
10(18): 15634–15641 (2018).
62. Q. Guo, Y. Han, H. Wang, S. Xiong, Y. Li, S. Liu, K. Xie, “New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries.”
ACS Appl. Mater. Interfaces.
9(48): 41837–41844 (2017).
63. Q. Liu, Y. Liu, X. Jiao, Z. Song, M. Sadd, X. Xu, A. Matic, S. Xiong, J. Song, “Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries.”
Energy Storage Mater..
23, 105–111 (2019).
64. J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, “Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries.”
Energy Storage Mater..
26, 283–289 (2020).
65. J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai, Y. Li, B. Chen, J. Zhao, S. Dong, J. Ma, L. Yue, Z. Liu, X. Guo, G. Cui, L. Chen, “High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery.”
J. Mater. Chem. A.
5(10): 4940–4948 (2017).
66. J. Zhou, P. S. Fedkiw, “Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides.”
Solid State Ion..
166(3): 275–293 (2004).
67. W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, “Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires.”
ACS Nano.
10(12): 11407–11413 (2016).
68. L. Wang, W. Yang, J. Wang, D. G. Evans, “New nanocomposite polymer electrolyte comprising nanosized ZnAl2O4 with a mesopore network and PEO-LiClO4.”
Solid State Ion..
180(4): 392–397 (2009).
69. H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, “Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery.”
Adv. Energy Mater..
10(21): 2000049(2020).
70. X. Chen, G. Li, Y. Su, X. Qiu, L. Li, Z. Zou, “Synthesis and room-temperature ferromagnetism of CeO2nanocrystals with nonmagnetic Ca2+doping.”
Nanotechnology.
20(11): 115606(2009).
71. Z. Wei, Y. Ren, M. Wang, J. He, W. Huo, H. Tang, “Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming.”
Nanoscale Res. Lett..
15(1): 122(2020).
72. C. Niu, J. Liu, G. Chen, C. Liu, T. Qian, J. Zhang, B. Cao, W. Shang, Y. Chen, J. Han, J. Du, Y. Chen, “Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries.”
J. Power Sources.
417, 70–75 (2019).
73. M. M. Abutalib, A. Rajeh, “Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications.”
Polym. Test..
91, 106803(2020).
74. R. Alves, J. P. Donoso, C. J. Magon, I. D. A. Silva, A. Pawlicka, M. M. Silva, “Solid polymer electrolytes based on chitosan and europium triflate.”
J. Non-Cryst. Solids.
432, 307–312 (2016).
75. I. Dueramae, M. Okhawilai, P. Kasemsiri, H. Uyama, R. Kita, “Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery.”
Sci. Rep..
10(1): 12587(2020).
76. B. Gilbert, R. K. Ono, K. A. Ching, C. S. Kim, “The effects of nanoparticle aggregation processes on aggregate structure and metal uptake.”
J. Colloid Interface Sci..
339(2): 285–295 (2009).
77. Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen, Q. Zeng, L. Zhang, W. Liu, L. Zhang, “Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries.”
J. Mater. Chem. A.
6(35): 17227–17234 (2018).
78. W. Wieczorek, J. R. Stevens, Z. Florjańczyk, “Composite polyether based solid electrolytes. The Lewis acid-base approach.”
Solid State Ion..
85(1): 67–72 (1996).
79. S. Suriyakumar, S. Gopi, M. Kathiresan, S. Bose, E. B. Gowd, J. R. Nair, N. Angulakshmi, G. Meligrana, F. Bella, C. Gerbaldi, A. M. Stephan, “Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries.”
Electrochim. Acta.
285, 355–364 (2018).
80. J.-F. Wu, X. Guo, “MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries.”
J. Mater. Chem. A.
7(6): 2653–2659 (2019).
81. C. Yuan, J. Li, P. Han, Y. Lai, Z. Zhang, J. Liu, “Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework.”
J. Power Sources.
240, 653–658 (2013).
82. H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge, T. Xu, X. Guo, X. Sun, “Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries.”
Energy Storage Mater..
18, 59–67 (2019).
83. G. Zhang, Y.-L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike, “Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte.”
J. Am. Chem. Soc..
141(3): 1227–1234 (2019).
84. W. Sun, J. Zhang, M. Xie, D. Lu, Z. Zhao, Y. Li, Z. Cheng, S. Zhang, H. Chen, “Ultrathin Aramid/COF Heterolayered Membrane for Solid-State Li-Metal Batteries.”
Nano Lett..
20(11): 8120–8126 (2020).
85. D. Dong, H. Zhang, B. Zhou, Y. Sun, H. Zhang, M. Cao, J. Li, H. Zhou, H. Qian, Z. Lin, H. Chen, “Porous covalent organic frameworks for high transference number polymer-based electrolytes.”
ChemComm.
55(10): 1458–1461 (2019).
86. Z. Zhang, Y. Huang, H. Gao, C. Li, J. Huang, P. Liu, “3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries.”
J. Membr. Sci..
621, 118940(2021).
87. C. Zuo, M. Yang, Z. Wang, K. Jiang, S. Li, W. Luo, D. He, C. Liu, X. Xie, Z. Xue, “Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries.”
J. Mater. Chem. A.
7(32): 18871–18879 (2019).
88. Y. Li, Z. Sun, D. Liu, S. Lu, F. Li, G. Gao, M. Zhu, M. Li, Y. Zhang, H. Bu, Z. Jia, S. Ding, “Bacterial Cellulose Composite Solid Polymer Electrolyte With High Tensile Strength and Lithium Dendrite Inhibition for Long Life Battery.”
Energy Environ. Mater.
0, 1–10 (2020).
89. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, S. Grimme, “A generally applicable atomic-charge dependent London dispersion correction.”
J. Chem. Phys..
150(15): 154122(2019).
90. F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on polyacrylonitrile.”
Chem. Mater..
5(9): 1268–1272 (1993).
91. K. Xu, “Electrolytes and Interphases in Li-Ion Batteries and Beyond.”
Chem. Rev..
114(23): 11503–11618 (2014).
92. P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, “The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors.”
Nat. Mater..
3(7): 476–481 (2004).