1.C. K. Dyer, “Replacing the battery in portable electronics.”
Sci. American..
281(1): 88–93 (1999).
2.C. Song, “Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century.”
Catalysis today..
77(1-2): 17–49 (2002).
3.A. B. Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy.”
Renewable and Sustainable Energy Reviews.
6(5): 433–455 (2002).
4.N. Q. Minh, “Ceramic fuel cells.”
J. Am. Ceramics Soc..
76(3): 563–588 (1993).
5.T. lshihara, H. Matsuda, Y. Takita, “Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor.”
J. Am. Chem. Soc..
116(9): 3801–3803 (1994).
6.T. Tsai, E. Perry, S. Barnett, Low temperature solid oxide fuel cells utilizing thin bilayer electrolytes.
144(5): L130(1997).
7.T. Ishihara, K. Shimose, T. Kudo, H. Nishiguchi, T. Akbay, Y. Takita, “Preparation of Yttria Stabilized Zirconia Thin Films on Strontium Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells.”
J. Am. Ceram. Soc..
83(8): 1921–1927 (2000).
8.S. D. Kim, S. H. Hyun, J. Moon, J. H. Kim, R. H. Song, “Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells.”
J.Power Sources..
139(1-2): 67–72 (2005).
9.J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, “Low Temperature High Performance Anode Supported Solid Oxide Fuel Cells.”
J. Electrochem. Soc..
146(1): 69–78 (1999).
10.T. Ishihara, H. Matsuda, Y. Takita, “Ishihara, Tatsumi, Hideaki Matsuda, and Yusaku Takita. “Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide.”
Solid State Ionics..
79, 147–151 (1995).
11.J. W. Yan, H. Matsumoto, M. Enoki, T. Ishihara, “High-Power SOFC Using La0.9 Sr0.1 Ga0.8 Mg0.2 O3−δ∕ Ce0.8 Sm0.2 O2−δ Composite Film..”
Electrochem. Solid-State Lett.,.
8(8): A389(2005).
12.O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, “Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells.”
Solid State Ionics..
22(2-3): 241–246 (1987).
13.S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes.”
Int. J. Inorg. Mater..
3(2): 113–121 (2001).
14.Z. P. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, S. A. Barnett, “A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.”
Nature..
435(7043): 795–798 (2005).
15.A. A. Yaremchenko, A. L. Shaula, V. V. Kharton, J. C. Waerenborgh, D. P. Rojas, M. V. Patrakeev, F. M. B. Marques, “Ionic and electronic conductivity of La9.83−x Pr x Si4.5 Fe1.5 O26±δ apatites.” Solid State Ionics.. 171(1-2): 51–59 (2004).
16.J. B. Goodenough, Y. H. Huang, “Alternative anode materials for solid oxide fuel cells.”
J. Power Source..
173(1): 1–10 (2007).
17.M. Mogensen, S. Skaarup, “Kinetic and geometric aspects of solid oxide fuel cell electrodes..”
Solid State Ionics.,.
86-88, 1151–1160 (1996).
18.S. P. Jiang, J. P. Zhang, K. Foger, “Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells: III. Effect of air flow,.”
J. Electrochem. Soc.,.
148(7): C447(2001).
19.K. R. Williams, J. G. Smithz, Fuel Cell with Solid State Electrolytes. 464, 861(1969).
20.A. Momma, Y. Kaga, T. Okuo, “Improvement of the Electrode Performance of Alloy Substrate-type Tubular SOFC.” Bulletin of the Electrotechnical Laboratory.. 63(3): 103–113 (1999).
21.A. Mineshige, K. Fukushima, S. Okada, T. Kikuchi, M. Kobune, T. Yazawa, K. Kikuchi, M. Inaba, Z. Ogumi, “Porous metal tubular support for solid oxide fuel cell design.”
Electrochem. Solid-State Lett..
9(9): A427(2006).
22.C. Hwang, C.-H. Tsai, C.-H. Lo, C.-H. Sun, “Plasma sprayed metal supported YSZ/Ni–LSGM–LSCF ITSOFC with nanostructured anode.”
J. Power Sources..
180(1): 132–142 (2008).
23.H. J. Cho, G. M. Choi, “Fabrication and characterization of Ni-supported solid oxide fuel cell.”
Solid State Ionics..
180(11-13): 792–795 (2009).
24.T. Ishihara, J. Yan, M. Shinagawa, H. Matsumoto, “Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film.”
Electrochim. Acta..
52(4): 1645–1650 (2006).
25.T. Ishihara, J. W. Yan, M. Enoki, S. Okada, H. Matsumoto, “Ni–Fe alloy-supported intermediate temperature SOFCs using LaGaO3 electrolyte film for quick startup,.”
J. Fuel Cell Sci. Technol.,.
5(3): 031205–1–031205-3 (2008).
26.Y.W. Ju, H. Eto, T. Inagaki, T. Ishihara, “High power SOFC using LSGM film on NiFe porous bi-metal substrate.”
ECS Trans..
25(2): 719(2009).
27.J. Yan, M. Enoki, H. Matsumoto, T. Ishihara, “Nanoporous Ni–Fe bimetallic plates for nonfragile, reliable SOFCs.”
Electrochem. Solid-State Lett..
10(9): B139(2007).
28.Y. Lee, G.M. Choi, “Ceria Film Supported on Ni-Fe Metal Film.”
ECS Trans..
25(2): 727(2009).
29.H.C. Park, A.V. Virkar, “Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte.”
J. Power Sources..
186(1): 133–137 (2009).
30.J.H. Zhu, S.J. Geng, Z.G. Lu, W.D. Porter, “Evaluation of binary Fe–Ni alloys as intermediate-temperature SOFC interconnect.”
J. Electrochem. Soc..
154(12): B1288(2007).
31.S. Molin, M. Gazda, B. Kusz, P. Jasinski, “Evaluation of 316 L porous stainless steel for SOFC support.”
J. Eur. Ceram. Soc..
29(4): 757–762 (2009).
32.P. Bance, N.P. Brandon, B. Girvan, P. Holbeche, S. O’Dea, B.C.H. Steele, “Spinning-out a fuel cell company from a UK University—2 years of progress at Ceres Power.”
J. Power Sources..
131(1-2): 86–90 (2004).
33.N.P. Brandon, A. Blake, D. Corcoran, D. Cumming, A. Duckett, K. El-Koury, D. Haigh, C. Kidd, R. Leah, G. Lewis, C. Matthews, N. Maynard, N. Oishi, T. McColm, R. Trezona, A. Selcuk, M. Schmidt, L. Verdugo, “Development of metal supported solid oxide fuel cells for operation at 500-600 ℃.”
J. Fuel Cell Sci. Technol..
1(1): 61–65 (2004).
34.N. Oishi, Y. Yoo, “Fabrication of cerium oxide based SOFC having a porous stainless steel support.”
ECS Trans..
25(2): 739(2009).
35.P. Blennow, J. Hjelm, T. Klemens⊘, Å. Persson, K. Brodersen, A.K. Srivastava, H.L. Frandsen, M. Lundberg, S. Ramousse, M. Mogensen, “Development of planar metal supported SOFC with novel Cermet anode.”
ECS Trans..
25(2): 701–710 (2009).
36.I. Villarreal, C. Jacobson, A. Leming, Y. Matus, S. Visco, L. DeJonghe, “Metal-supported solid oxide fuel cells.”
Electrochem. Solid State Lett..
6(9): A178(2003).
37.M.C. Tucker, G.Y. Lau, C.P. Jacobson, L.C. DeJonghe, S.J. Visco, “Stability and robustness of metal-supported SOFCs.”
J. Power Sources..
175(1): 447–451 (2008).
38.R.T. Leah, N.P. Brandon, P. Aguiar, “Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500–600 ℃.”
J. Power Sources..
145(2): 336–352 (2005).
39.R. Hui, D. Yang, Z. Wang, S. Yick, C. Decès-Petit, W. Qua, A. Tuck, R. Maric, D. Ghosh, “Metal-supported solid oxide fuel cell operated at 400–600℃.”
J. Power Sources..
167(2): 336–339 (2007).
40.Q.-A. Huang, B. Wang, W. Qu, H. Rob, “Impedance diagnosis of metal-supported SOFCs with SDC as electrolyte.”
J. Power Sources..
191(2): 297–303 (2009).
41.D. Waldbillig, O. Kesler, “Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers.”
J. Power Sources..
191(2): 320–329 (2009).
42.H. Kurokawa, G.Y. Lau, C.P. Jacobson, L.C. De Jonghe, S.J. Visco, “Water-based binder system for SOFC porous steel substrates.”
J. Mater. Processing Technol..
182(1-3): 469–476 (2007).
43.A. Holt, P. Kofstad, “Electrical conductivity and defect structure of Cr2 O3. II. Reduced temperatures (<~ 1000 C).”
Solid State Ionics..
69(2): 137–143 (1994).
44.M. C. Tucker, “Progress in metal-supported solid oxide fuel cells: A review.”
J. Power Sources..
195(15): 4570–82 (2010).